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Società Italiana di Fisica
Springer-Verlag 2002

Electronic structure and anomalous physical properties
of metastable Al-Si solid solutions

D.V. Livanov1,a, E.I. Isaev1, Yu.Kh. Vekilov1, S.I. Manokhin1, A.S. Mikhaylushkin1, and S.I. Simak2

1 Department of Theoretical Physics, Moscow State Institute of Steel and Alloys - Technological University, Leninsky pr. 4,
119991 Moscow, Russia

2 Department of Applied Physics, Chalmers University of Technology and Göteborg University, SE-412 96 Gothenburg, Sweden
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Abstract. Al-Si solid solutions synthesized under high pressure demonstrate striking physical properties,
such as enhanced superconductivity and peculiarities of low-temperature transport coefficients. In order
to understand the connection of these effects to the electronic structure changes we have performed a
first-principles study of the electronic spectra and Fermi surfaces of Al-Si solid solutions. We show that
two electronic topological transitions (ETT’s) lead to unusual concentration dependencies of the resistivity,
thermoelectric power and Hall constant of the system while a variety of other interesting phenomena such
as lattice instability and superconductivity enhancement may be a result of the nesting features appearing
upon Si doping. We present also the results of our theoretical calculations of the thermodynamic and
transport properties of Al-Si solid solutions which are in good agreement with experiment and reproduce
nicely the experimentally observed peculiarities.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms

1 Introduction

Al-rich Al1−xSix substitutional solid solutions with the
face-centered cubic (fcc) structure demonstrate unusual
physical properties. In particular, rather peculiar behavior
of the low-temperature thermoelectric power and Hall con-
stant and an increase of the superconducting critical tem-
perature, Tc, by an order of magnitude compared to pure
Al have been observed in recent experiments [1–9]. Silicon
is poorly dissolved in aluminum at ambient conditions and
in order to reach the Si content x ∼ 0.1, the synthesis un-
der high pressure (up to 8 GPa) followed by the quenching
to liquid nitrogen temperatures is required. So obtained
non-equilibrium solid solutions Al1−xSix are homogeneous
single-phase compounds with Tc increasing from 1.18 K for
x = 0 (pure Al) up to 11 K for x ≈ 0.2. Rather simple
Fermi surface composed of the s- and p-electronic states
and an almost linear dependence of Tc on the Si content
make these materials an excellent model superconductor
for investigations of the interplay between superconduc-
tivity and the lattice instability.

The nonequilibrium state with remarkable lattice in-
stability is a direct consequence of the supersaturation of
Al1−xSix solid solutions. As it was first demonstrated in
references [2,3], an essential softening of the transverse
acoustic phonon modes and decrease of the shear modu-
lus with Si doping are the main reasons behind dramatic
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enhancement of superconductivity in Al1−xSix. Later on
anomalies in transport properties such as thermoelectric
power and Hall constant were found [5,7,8] in the vicin-
ity of the lattice instability point. It was also argued that
the enhancement of superconductivity is connected to the
increase of the electron-phonon matrix element [6].

Here we present the results of our first-principles cal-
culations of the Fermi surfaces and electronic properties
of Al1−xSix solid solutions for a wide range of concen-
trations and pressures revealing physics behind anoma-
lous properties of these compounds. We demonstrate that
the electronic structure of pure Al is essentially modi-
fied upon Si doping. There are two main features in the
electronic structure which result in a variety of anoma-
lies. First, there are two electronic topological transitions
(ETT’s) taking place with increasing concentration of
Si and/or pressure. Further we demonstrate that one of
these ETT’s has to be responsible for the experimentally
observed anomalies in transport properties. Second, we
find the effect of gradual flattening of the Fermi surface
parts with increasing concentration of Si. We identify pro-
nounced nesting features of the Fermi surface related to
this flattening and trace down their dependence on the Si
concentration.

The paper is structured as follows. In Section 2 we
present the details of our computational technique. Sec-
tion 3 is devoted to the calculation of the electronic struc-
ture of Al1−xSix solid solutions. We present the details
of the Fermi surface at different Si concentrations and
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pressures and find two ETT’s taking place in the system.
Then we provide an evidence for nesting features and trace
down their dependence on Si concentration. Section 4 is
devoted to the calculation of the thermodynamic proper-
ties of Al1−xSix substitutional solid solutions: formation
enthalpy, lattice parameter, bulk modulus as well as one-
electron density of states at the Fermi level. In Section 5
we discuss the transport properties of the system such
as resistivity, thermoelectric power and Hall constant and
demonstrate the connection between anomalies of trans-
port properties and an ETT which takes place upon Si
doping. The results are summarized in Section 6.

2 Computational details

The scalar-relativistic KKR-CPA-ASA [10] method with
a basis set consisting of s, p and d orbitals was used
to study random Al-Si solid solutions on the fcc un-
derlying lattice. Exchange and correlation were included
within the density functional theory making use of the
Perdew-Burke-Erzernhof generalized gradient approxima-
tion (GGA) [11]. The atomic sphere radii for both el-
ements were chosen equal to the radius of the average
atomic Wigner-Sietz sphere of the solid solution, and the
charge transfer effects were included in the framework of
the screened impurity model with a prefactor β = 0.6 [12].
The Brillouin zone integration was performed by employ-
ing the special points technique and using up to 1500 k-
points in the irreducible wedge of the fcc Brillouin zone
(BZ). The energy integrals were calculated on a semi-
circular complex energy contour with 25 points on it. The
convergence criterion for the total energy was 0.001 mRy.
To obtain the ground state properties of the solid solutions
we performed GGA self-consistent calculations for a large
number of concentrations of Si between 0 and 100 at.%
with different lattice parameters, and subsequently used
a Morse-like fitting for the total energy curves [13]. The
Fermi surfaces (FS) were calculated on the basis of the
formalism presented in detail in reference [14] by map-
ping the maxima of the Bloch spectral density function
A(k,EF ) onto the BZ. The FS presented in the following
section were calculated on the dense grid of k-points in the
ΓXWK section of the fcc BZ for the lattice parameters
corresponding to different concentrations and pressures.

3 Fermi surface

3.1 Electronic topological transitions

The FS of pure aluminum at ambient conditions consists
of a big second-zone hole part and a small third-zone
toroidlike electron pocket around point K, as shown in
Figure 1. When applying moderate pressure to pure alu-
minum the effect is mainly the shrinkage of the electron
pocket at K. At pressure higher than 8 GPa this pocket
finally disappears, what corresponds to the ETT of the
void disappearance type. As should be expected, alloying

Fig. 1. Calculated Fermi surface of pure aluminum at zero
pressure.

Fig. 2. Calculated Fermi surface of random alloy Al + 10 at.%
of Si at zero pressure.

Fig. 3. Calculated Fermi surface of random alloy Al + 8 at.%
of Si at P = 8 GPa.

with Si, whose number of valence electrons is higher by
one compared to Al, has an opposite effect on the devel-
opment of the electron pocket at K. The pocket grows
with increasing Si content resulting in the ETT of the
neck formation type taking place near point W at 10 at.%
of Si at zero pressure (see Fig. 2). Higher pressure, how-
ever, facilitates the neck formation and at about 8 GPa
this ETT takes place already at 8 at.% of Si (see Fig. 3).
It should be mentioned that the analysis of the FS de-
velopment has been done for the whole BZ and the above
mentioned ETT’s are the only ones found for the ranges of
concentrations and pressures addressed in this work. Ac-
cording to the general theory of ETT’s [18] they have to
manifest themselves in the peculiarities of different physi-
cal properties, first of all transport properties, such as the
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Fig. 4. Calculated part of the Fermi-surface of pure Al. Parts
of the Fermi surface connected by the nesting vector Q are
emphasized (a detailed explanation is given in the text).

thermoelectric power. Certainly, the second ETT of the
neck formation type is of most interest as it takes place
with increasing Si content and therefore may be consid-
ered in the context of recent experiments on the concen-
tration dependences of transport properties of Al-Si solid
solutions. The fact that the experimentally measured ther-
moelectric power demonstrates a pronounced peculiarity
at about 8–10 at.% of Si [7] agrees nicely with the pres-
ence of an ETT in the same range of the Si content. On
the other hand, it follows from the microscopic theory of
ETT’s [18], that they do not influence the superconduct-
ing properties, at least for three-dimensional systems.

3.2 Nesting features and enhanced superconductivity

Fermi surface nesting features (Kohn anolmalies) are
known to lead to a variety of instabilities including Peierls,
charge-density-wave and spin-density-wave instabilities.
Kohn [15] has shown that for a free electron gas, the ex-
istence of a sharp Fermi surface leads to non-analyticities
in the wave-vector dependent quantities such as phonon
spectrum, susceptibility etc. Later on, these results were
generalized for the case of an arbitrary band structure,
particularly, nesting features. It has also been argued that
high superconducting transition temperatures of various
compounds may arise from different kinds of instabili-
ties [16,17].

To analyze the possible nesting features and trace
down their dependence on the Si content we cal-
culated products of the Bloch spectral functions
(A(k, EF )A(k + Q, EF )) at points k and k + Q, where k
belongs to the first BZ and Q is the so-called Fermi surface
superposition vector. Quantity of A(k, EF )A(k + Q, EF )
has the meaning of the weight of the local superposition of
two Fermi surface parts when BZ is displaced by vector Q.
Quite obviously it attains a non-zero value only when the
nesting corresponding to vector Q is present and therefore
helps to reveal the nesting features of a system.

Fig. 5. Calculated part of the Fermi-surface of alloy Al +
20 % at. Si. Parts of the Fermi surface connected by the nesting
vector Q are emphasized (a detailed explanation is given in the
text).

Fermi surface calculations show that the essential im-
position of the two symmetrical parts of the second hole
zone and third electron zone takes place in the system.
In Figures 4 and 5 the nesting vector Q connecting the
second hole zone and the third electron zone in pure Al
and Al0.8Si0.2 alloys is clearly seen. It should be noticed
that upon increase of the Si content the nesting feature of
the FS becomes gradually more pronounced due to both
growth of the third electron zone and the FS smearing typ-
ical of disordered alloys. Though the quantitative analysis
of the interplay between nesting features and supercon-
ductivity is beyond the scope of the present article, we
mention that nesting may be responsible for appearance
of the soft mode in the phonon spectrum and hence the
enhancement of superconductivity in Al1−xSix substitu-
tional alloys.

The dramatic increase of the superconducting critical
temperature, Tc upon Si doping is one of the most remark-
able features of Al1−xSix substitutional solid solutions.
The superconducting critical temperature was found to
increase by an order of magnitude (from 1.18 K to 11 K)
with variation of Si content in a series of homogeneous
single-phase fcc metallic compounds. Moreover, Al1−xSix
solid solutions can be considered as a very interesting ob-
ject for studies of the interplay between the supercon-
ducting properties and the lattice instability in metallic
systems. A simple Fermi surface composed of the s- and
p-electronic states allows for a simple relation between Tc
and Si content [9] to be used and provides the possibility to
consider these alloys as a very promising model system to
study the mechanism of superconductivity enhancement
in the vicinity of the lattice instability.

Due to the above mentioned reasons we discuss quali-
tatively the possible relationship between nesting features
and superconductivity in this compound. It was found
in recent studies [6], that if both the one-electron den-
sity of states at Fermi level and the phonon spectrum
parameters are only slightly dependent upon composition,
their change with Si doping can provide just 1–3 % change



122 The European Physical Journal B

in Tc. Therefore, the only direct reason for an order of
magnitude increase of the superconducting critical tem-
perature may be the enhancement of the electron-phonon
coupling λ with the Si doping. Discussing the possible in-
fluence of Si doping on λ, one has to distinguish the ef-
fects of modifications of the electron and phonon spectra
parameters. Although some phonon softening was discov-
ered in reference [3], it was shown not to be sufficient to
provide an order of magnitude increase of Tc [6]. There-
fore, it is the change in the electronic structure which
should be responsible for the anomalous increase of of the
electron-phonon interaction and Tc. As was demonstrated
above the analysis of the Fermi surface transformation
under Si doping allows us to identify the nesting features
of the Fermi surface. Qualitatively these nesting features
may result in an anomalous increase of the one-electron
susceptibility with Si content at nesting vectors Q with
the corresponding enhancement of the electron-phonon in-
teraction. The results of first-principle calculations of the
one-electron susceptibility as well as numerical estimation
of the electron-phonon coupling constant will be reported
elsewhere.

4 Thermodynamic properties

4.1 Formation enthalpy

The formation enthalpy of Al-Si random alloys
(∆H(Al1−xSix)) was calculated as a measure of the
stability of the system with respect to the phase sepa-
ration into pure aluminum and silicon in their ground
state fcc and diamond structures, respectively. Therefore
∆H(Al1−xSix) = H(Al1−xSix)− xH(Si)− (1− x)H(Al),
where H = E+PV , with E standing for the total energy,
P for the pressure, and V for the volume. The results
are presented in Figure 6. ∆H is exactly zero at x = 0
as it corresponds to the pure Al in the fcc structure
and has a positive value at x = 1 corresponding to the
enthalpy difference between silicon in the diamond and
fcc structures. From the character of the curve it is
obvious that Al-Si random alloys at ambient conditions
are unstable with respect to the phase separation in the
whole concentration interval. This agrees well with an
experimental phase diagram suggesting extremely limited
low temperature solubility of Si in Al matrix (0.3%
according to reference [19]). Under pressure, however,
the relative stability of the random Al-Si alloys with
respect to the elemental Al and Si gradually increases and
already at P ∼ 6.5 GPa the solubility of Si in Al reaches
∼ 25 at.%. It reproduces nicely the result of experimental
observations [7]. At pressures higher than 9 GPa the
solubility becomes unlimited. We note, however, that
there is a phase transition in Si from the diamond to
the β-Sn structure, which is experimentally found in the
range 8.8–12.5 GPa [20,21]. We did not consider the
β-Sn structure in our analysis and did not compare the
enthalpies of the diamond and β-Sn structures due to
the limited accuracy of our calculational technique based
on the ASA approximation. We remark, however, that
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Fig. 6. Calculated formation enthalpy as a function of
Si content.

due to such a phase transition, one should expect that
at highest pressures considered in the present work some
decrease of the solubility limits should occur.

4.2 Lattice parameter and bulk modulus

The calculated lattice parameter as a function of Si con-
tent is presented in Figure 7 together with the experi-
mental data from references [22,23]. The calculated val-
ues are found in good agreement with experimental ones.
The lattice parameter is decreasing with increasing Si con-
centration with a deviation from the Vegard’s law to be
practically negligible. We note, that the fact that a good
description of the behavior of the lattice parameter with
increasing Si concentration indicates indirectly that the
crystal structure and atomic distribution of the experi-
mentally investigated Al-Si alloys should be rather close
to those of an idealized fcc random alloys considered here.
Otherwise any pronounced clustering of Si would result in
the essential deviation of the lattice parameter from the
Vegard’s law due to a strong volume relaxation (atomic
volumes of Si in the diamond and fcc structures are differ
by ∼ 16%).

The concentration dependence of the calculated bulk
modulus is presented in Figure 8. The calculated bulk
modulus of the pure fcc Al is 94.6, in reasonable agree-
ment with experimental value of 76 GPa [24]. It moder-
ately decreases with increasing Si content (by just 1.5% at
15 at.% of Si compared to pure Al) and reveals a kink in
the range 6–10 at.% , with a minimum near 6 at.% of Si
content and a maximum near 10 at.% of Si. Theoretically
the influence of ETT on the bulk modulus has not been
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Fig. 7. Calculated lattice parameter as a function of Si content
and experimental data from references [22,23].
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Fig. 8. Calculated bulk modulus as a function of Si content.

studied in detail. From general expectations one may ar-
gue that an anomaly in the bulk modulus connected with
the ETT must be of the same cusp-like type as in other
thermodynamical properties (heat capacity, compressibil-
ity and so on) and electrical resistivity [25].
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Fig. 9. Calculated density of states at Fermi level as a function
of Si content.
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Fig. 10. Calculated derivative of the density of states at Fermi
level with respect to energy as a function of Si content.

4.3 Density of states

The density of states was calculated for 15 Al-Si solid
solutions with Si content ranging from 0 to 15 at.%
and volumes corresponding to pressures ranging from 0
to 16 GPa. A very fine grid of k-points was used for
the integration over the Brillouin zone. Derivatives of
the density of state at the Fermi level were obtained
by an accurate numerical differentiation. Results of first-
principles calculations of N(EF ) and [dN(E)/dE]E=EF

at various Si concentrations are presented in Figures 9
and 10, respectively.
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5 Transport properties

In a large number of metals and metallic alloys, the topo-
logical properties of the Fermi surface may change under
the influence of different factors such as chemical compo-
sition, pressure and so on (for a comprehensive review,
see Ref. [18]). The cusps in the heat capacity, magnetic
susceptibility and electrical conductivity as well as sin-
gularities in the thermoelectric power were observed in
different metallic systems as functions of the energy ∆
characterizing the proximity of the system to the topolog-
ical transition point. To describe the transition of the neck
disruption or the neck formation type, the simplest model
of the Fermi surface in the form of rotation hyperboloid
has been introduced [18]. If the chemical potential of the
electrons changes under the influence of pressure, defor-
mation or chemical composition, this model describes the
transformation of a one-sheet hyperboloid (∆ > 0) into
a two-sheet hyperboloid (∆ < 0) (from the former to the
latter for the neck disruption and vice versa for the neck
formation type ETT’s, respectively).

The conductivity, σ, the thermoelectric power, S, and
Hall constant, R in a metallic system are given by [26,27]:

σ =
1
3
e2[v2

F τN ]E=EF , (1)

S =
1
3e

1
[v2
F τN ]E=EF

[
∂(v2

F τN)
∂E

]
E=EF

, (2)

R =
6
5e

1
[v4
FN

2]E=EF

[
∂(v4

FN)
∂E

]
E=EF

, (3)

where e stands for electron charge, vF for the Fermi veloc-
ity, τ for the relaxation time, and EF for the Fermi energy.
In real solid solutions, σ, S andR are sensitive to the pecu-
liarities of the electron spectrum as well as the relaxation
time, and one has to be careful when comparing results
from the above equations with experimental data. To eval-
uate the electrical conductivity one has to knowN(E) and
τ(E) at the Fermi level. The situation is more complicated
in the case of the thermoelectric power and Hall effects as
these transport properties involve the so-called electron-
hole asymmetry factors which contain energy derivatives
of the density of states, [dN(E)/dE]E=EF , and relaxation
time, [dτ/dE]E=EF .

It is obvious that for an adequate evaluation of rele-
vant transport properties, one has to know the behavior
of the density of states and its derivative as well as the
relaxation time and its derivative as a function of Si con-
tent. The first-principles methods allow one to evaluate
the electron spectrum, shape of the Fermi surface, elec-
tronic density of states and other thermodynamic proper-
ties. On the other hand, when calculating transport coef-
ficients, one has to know the relaxation time of charge and
heat carriers, even if the simplest transport theory is used.
To verify quantitatively the relation between the ETT and
transport properties we performed theoretical calculations
of relevant transport properties of Al1−xSix solid solutions
in the vicinity of the ETT. As we will show below, de-
spite the fact that both, N(EF ) and [dN(E)/dE]E=EF ,

as functions of Si content resemble the behavior of the
resistivity and thermoelectric power respectively, fittings
to calculated concentration dependencies of the density of
states and its derivative demonstrate that peculiarities in
experimentally measured transport properties cannot be
completely accounted for, and therefore calculations of the
electron relaxation time and its derivative are required. As
it was demonstrated in the theory of ETT’s [18], it is the
peculiarity in the electronic relaxation time, τ(E,∆), in
the vicinity of the ETT point which is mainly responsi-
ble for anomalies of transport coefficients in alloys, while
features of the density of states and its derivative at the
Fermi level are of minor importance. Therefore, to de-
scribe consistently available experimental data one has
to combine the results of first-principles calculations of
the Fermi surfaces (to define the precise position of the
ETT point) and [N(E)]E=EF and [dN(E)/dE]E=EF with
model calculations of τ(E,∆) and [dτ(E,∆)/dE]E=EF

near the ETT point.
For an ETT of the neck disruption type, the electron

relaxation time is given by [18]:

τ−1(E,∆) = τ−1
0

κ(E −EF )− κ(E +∆)
2EF

, (4)

where

κ(E) =
√

2

√√√√√E2 +
1

4τ2
0

−E (5)

and τ0 is the electron relaxation time far from the transi-
tion point.

When comparing the results from equations (1–3) as
functions of Si content with available experimental data
we have used the data for [N(E)]E=EF and [dN/dE]E=EF

calculated by the KKR-CPA method as described above.
[τ(E)]E=EF and [dτ/dE]E=EF were calculated from equa-
tion (4) and its derivative with respect to energy. Depen-
dence on the Si content, CSi, was incorporated through the
parameter ∆: ∆ = A EF (CSi−C(0)

Si ), where A is a dimen-
sionless constant and C

(0)
Si is the Si content correspond-

ing to the ETT point. According to our first-principles
calculations C(0)

Si =0.1 was chosen. To account correctly
for the Si content dependence we also included it in τ0.
As the electron relaxation time far from the transition
point is proportional to the scattering centers concentra-
tion, τ0 ∝ (CSi + D), where D represents the content of
other defects scattering electrons: dislocations, vacancies
and so on. Further, in a generally accepted way we as-
sumed that v2

F is proportional to CSi, describing the shift
of the Fermi energy by Si doping.

Under the above conditions, the electrical conductiv-
ity, thermoelectric power and Hall constant were evalu-
ated from equations (1–3) and fitted to the experimental
data from reference [7]. Fitting results are shown in Fig-
ures 11, 12 and 13. Discussing the results presented in
these Figures we have to mention the crucial importance
of taking into account peculiarities of the electronic relax-
ation time in equation (1). Indeed, the dependence of the
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Fig. 12. Calculated thermopower as a function of Si content:
the circles are experimental data from reference [7], solid line
is a fit.

density of states at the Fermi level upon the Si content
shown in Figure 9 cannot contribute to the sharp kink
in the experimentally measured resistivity vs. Si content
dependence. On the other hand, the derivative of the den-
sity of states at the Fermi level presented in Figure 10,
demonstrates a maximum as a function of Si content, more
pronounced under pressure as high as 16 GPa. This be-
havior correlates qualitatively with the maximum in the
concentration dependence of the experimentally measured
thermoelectric power [7]. However, fitting the calculated
concentration dependence of [dN(E)/dE]E=EF to exper-
imental data one finds that the experimental maximum
is much sharper and cannot be accounted for from the
[dN(E)/dE]E=EF dependence only. When calculating an
additional contribution to the thermoelectric power com-
ing from [∂τ/∂E]E=EF from equation (1), we find the
quantitative agreement between theory and experiment
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Fig. 13. Calculated Hall constant as a function of Si content:
the circles are experimental data from reference [7], solid line
is a fit.

as demonstrated in Figure 12. The quality of the fit is
worse for Hall constant R (Fig. 13) since according to
equation (3), R does not contain the relaxation time and
is governed by the density of states and its derivative only.
The poor quality of the fit for Hall constant may indicate
that the theory of Hall effect in substitutional solid solu-
tions should be revised.

6 Conclusions

Summarizing, we presented results of our theoretical cal-
culations of the Fermi surfaces, the thermodynamic prop-
erties as well as the resistivity, the thermoelectric power
and Hall constant of AlxSi1−x solid solutions. A first-
principles study demonstrates how essential the effect of
substitution of Al for Si is for the electronic properties
of this material. In particular, two electronic topological
transitions were predicted for the system upon applying
pressure and upon alloying with Si. The other remarkable
feature of the electronic structure is the nesting which
becomes more pronounced upon Si doping. We studied
the behavior of the alloy formation enthalpy, lattice pa-
rameter and bulk modulus and demonstrated the agree-
ment between our calculated results and available experi-
mental data. Further, we calculated the one-electron den-
sity of states and its energy derivative at the Fermi level
and showed that changes in N(EF ) and [dN(E)/dE]E=EF

cannot account for the peculiarities in transport proper-
ties. A consistent description of unusual transport proper-
ties in AlxSi1−x solid solutions is provided by the consid-
eration of the anomalous electron relaxation time in the
proximity of the ETT, while enhanced superconductivity
is attributed to the flattening of the Fermi surface parts
followed by nesting effects. In this respect it is worth to
emphasize that though the enhancement of the electron-
phonon interaction in the vicinity of the lattice instability
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point could be the main factor responsible for the Tc in-
crease, there is a solid ground to believe that anomalies in
the transport properties of metastable Al1−xSix alloys are
mainly due to the ETT, so the reasons for the two effects
are different.
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